# Priority Research Direction: Secure Federation for Large-Scale Collaborative Science

#### **Key emerging challenges**

ASCR security technologies underpin science federation projects worldwide. But now we face:

- More people: Collaborations larger, more frequent, more fluid, span more institutions
- More resources: Large and diverse data, computers, sensors, mobile devices
- More attacks: More, better connected, smarter, better equipped adversaries
- New technologies: Evolving commodity tech

#### Potential impact on software/systems

- "Virtual private/team labs" via outsourced IT provide delivery and enforcement vehicle; require delivery and sustainability model
- Data architectures and their security must be rethought to enable secure but flexible sharing
- HPC analysis and modeling in support of computer security → link to applied math

#### **Summary of research direction**

Rethink security enforcement, intrusion detection, incident response for team science:

- Enable instant VOs, that provision secure collaborative spaces in minutes not weeks
- Leverage VOs as basis for security mechanisms
- Take systems perspective on DOE-wide security, integrating data and modeling
- Address challenges of massively instrumented and mobile environment

## Potential impact on science communities or DOE capabilities

- Intrinsic and proactive security mechanisms encourage rather than discourage collaboration
- Virtual private labs enable secure creation and operation of outsourced research IT
- By facilitating secure data sharing spanning many modalities, enable transparent science
- Deliver value to 26,000 DOE/SC researchers and 27,000 facility users

# Priority Research Direction: High-Performance Distributed Data Management

#### **Key emerging challenges**

ASCR technologies have made reliable, efficient, secure data movement routine. But now we face:

- <u>Big pipes</u>: 100 Gbps will soon be commonplace, and 1 Tbps networks are on the horizon
- <u>Massive data</u>: Data volumes and complexities are growing faster than networks, computers
- More demands: Data becomes central to research progress; more sophisticated data
   management and sharing capabilities needed

#### Potential impact on software/systems

- Data services recognized as facility-supported service: ubiquitous, secure, robust
- Data services expand to encompass not just movement but also storage, analysis, indexing, sharing, annotation, ...
- Co-design of file systems, storage systems, operating systems, data movement systems, networks, applications

#### **Summary of research direction**

A coordinated, multi-dimensional attack on big data and its place in the research ecosystem:

- 1) End-to-end, Tbps file system-to-file system, with management of large-scale parallelism
- 2) <u>Top-to-bottom</u>, from problem to answer, addressing need for services beyond movement
- 3) <u>System-wide</u>, with 1000s of 10+ Gbps users, encompassing large-scale automation

## Potential impact on science communities or DOE capabilities

- Data pipes never an unnecessary barrier to use of DOE high-end facilities
- Data reuse and pace of discovery both increase by order of magnitude or more
- DOE facilities are used more efficiently due to more effective engagement of users with tasks
- Number of facility users increases significantly

## Priority Research Direction: Virtual Private Labs for Extreme Science

#### **Key emerging challenges**

- Increasingly complex science projects involving large-scale collaboration, data, and workflows require many tools from many sources
- Individual projects can not feasibly assemble these tools into a coherent and usable whole
- Challenges exacerbated by security, data issues
- Sustainability for the increasingly complex and expensive software required for science success

#### Potential impact on software/systems

- New type of facility required to support outsourced collaborative science applications
- New approach to developing and delivering collaborative applications lowers costs of producing, delivering, and using those apps
- New security challenges relating to massive outsourcing and collaboration
- Need for co-design of data architecture and collaboration architecture

#### Summary of research direction

- Enable the creation of virtual private labs that provide the resources and tools needed for effective extreme-scale team science
- Define platform that facilitates application development, distribution, operation, and use
- Address challenges inherent in massive data and security
- Do for extreme science what Apple IOS and app store does for the consumer market

## Potential impact on science communities or DOE capabilities

- Acceleration of on-ramp/off-ramp activities around extreme-scale computing reduces time to discovery and increases access to results
- Dramatic improvement in quality of research tools and access to computing resources accelerates discovery across DOE in general